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We study Axiom A flows and introduce a new definition of Gibbs states which 
is modeled after a current one for diffeomorphisms and by which Gibbs states 
are locally characterized by their transformation when pulled back by conjugat- 
ing homeomorphisms. We show that Gibbs states are equilibrium states and 
vice versa. We also show that for subshifts this equivalence can be strengthened. 
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1. I N T R O D U C T I O N  

For Axiom A homeomorphisms, equilibrium states are globally defined by 
a variational principle. It has been shown that they coincide with Gibbs 
states which are on the other hand defined using a local property which 
makes use of the hyperbolic structure induced by the hyperbolicity of 
the map. In this paper we extend to Axiom A flows the notion of Gibbs 
states using conjugating homeomorphism as it was originally introduced by 
Capocaccia (5) and Ruelle (9) for hyperbolic maps, and prove that they coin- 
cide with equilibrium states. Our results is in fact more general than the 
corresponding results for the discrete case in ref. 8. It is the flow equivalent 
of the quite general result in ref. 7, where it was proved that a Gibbs state 
in Capocaccia's original sense for a family of multipliers relates to a 
potential for which it is an equilibrium state. 
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Section 2 we give a precise definition of conjugating maps for Axiom A 
flows and show that they satisfy the same properties as they do in the case 
of homeomorphisms. In Section 3 we introduce Gibbs states and state our 
main result (Theorem 5), the equivalence of Gibbs and equilibrium states. 
In Sections 4-6 we state and prove our main result for suspensions over 
subshifts of finite type (Proposition 12), where we use the fact that equi- 
librium states locally have a product representation. In the last section we 
finally use standard techniques involving Markovian sections to show that 
the main result holds true for general Axiom A flows. For  this we show in 
Lemma 16 that a Gibbs state cannot be concentrated on the boundary set 
of a Markov partition and thus must be supported on the set of regular 
points, i.e., the points on which the Markov representation is unique. 

2. C O N J U G A C Y  

Let M be a compact (Riemannian) manifold and Ost: M ~ M a smooth 
flow. A compact subset f2 c M which is invariant under the flow is called 
an Axiom A basic set if: 

(i) For  every x el2 the tangent space Txg2 is the Whitney sum 
E ~  ES|  E u, where E ~ is the one-dimensional direction of the flow, and 
such that there exists a constant 2 > 0 satisfying 

IID~vlj~Ce-)"l[vll, v ~ E  s, t~O 

IIDr v~E", t>~O 

where we can assume that the positive constant C is equal to 1 (this is the 
case for an "adapted metric"). The number 2 is called the contraction 
parameter of the flow. 

(ii) ~ ,  [s is topologically mixing, that is, for open U, V c O  the 
intersection ~bt(U ) n V~  ~ for all large enough t. 

(iii) s N-oo<t<oo ~b,(U) for some open neighborhood U of 12. 

(iv) Periodic orbits are dense in f2. 

We shall in addition also assume that the flow ~b t is weakly mixing, 
i.e., that it does not factor over a simple closed orbit. If f2 = M, then we say 
cb, is an Anosov flow. 
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Def in i t ion  1. I. Two points r ff in ~ are conjugate if there exist 
real numbers e,/~ such that 

d(cb,+~(r ~,(~)) ~ 0 as t ~ - o o  

d(~,+#(r ~t(~)) --* 0 as t ~  

II. A continuous map ~0: (9, ~ ~2, (9~0 ~ s open, is conjugating if every 
point x ~ (9~o is conjugated to its image r with ~,/~ continuous functions 
in x, and if r commutes with the flow # ,  for small enough t, i.e., ~ o r _- 
~0o #t ,  on (9, ~ ~ ,((9,). We call the two functions ~(x) and /~(x) delay 
functions for the conjugating map r 

Notice that the delay functions ~ and /~ are locally well defined and 
have the same regularity as the strong stable and unstable foliations. 
(Although if x lies on a periodic orbit ~, then there are many potential 
values of ~ and/~ all of which differ by a multiple of the minimal period 
of , . )  If ~ ,  is the geodesic flow on a compact, negatively curved manifold, 
than the delay function /~ is the Busemann function and the conjugating 
points for which/~ is zero lie on horospheres. We can extend our notion of 
conjugacy to entire orbits and say that two orbits are conjugate if we can 
find a point on each one so that the two points are conjugate. (This is 
sometimes also called flow equivalence.) Obviously any two points on two 
conjugate orbits are conjugate. 

Conjugacy is obviously an equivalence relation on O, with the simplest 
conjugating maps being given by ~ ,  with t - t (x )  continuous in x and 
constant along orbits. Moreover, if ~p', ~" are two conjugating maps 
defined on open (9~, and (9~,,, respectively, then it is easy to see that their 
composition q~=p 'og"  is also a conjugating map defined on (9~o= 
~ ' -  ~((9~,, ~ ~'((9~,)). 

The flow q~t is called expansive if for every 6 > 0 there exists a constant 
> 0 such that if d(~b,(~), q~s.)(~)) < e, for all times t, for two points ( and 
in ~ and a continuous function s(t) with s(0)= 0, then ~t(~.)= ~ where 

Itl <~. 
The next two lemmas are the flow equivalents of similar results well 

known for hyperbolic maps/s) 

i_emma 2. Let q)t be expansive and ~o: (9~o ~ s conjugating. Then 
for every x s (9~ there exists an open (9 'c  (9~, x E (9', such that q~ r6stricted 
to (9' is a homeomorphism. 

Proof. We have to show that ~o [ (9' is injective for some open (9' c (9~ 
containing x. Let T > 0  be a number such that d(cb ,(y), q~ t+~o ~o(y))~e/2 
and d(~t(y), ~,+#o~p(y))<<.e/2 for t~> T, where ~=cz(y), /~=/~(y), y e  (9~, 
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are the delay functions of~o. Put ~' = SUpyee~,~ Ic~(y)l, /3'= S U p y ~  11/3(Y)II, 
and 7=max(e, /~) .  Let (9' be an open neighborhood of x such that 
d(q~,(z),~b,(x))<~/2 for [tl<~T+7 and all zs (9 ' .  Assuming that 
~o(y~) = ~o(y2), for some y~, Y2 �9 (9', we shall show that y~ = Y2. We obviously 
have c~(yl)= ~x(y2) and/~(yt)  =/~(Y2) and therefore: 

(i) d(~,(yl),~t(y~))<<.e for [ t l~<T+y 

(ii) d(~t(y~), ~b,(y2) ) 

d(~,(y~), ~t+~,ocp(y~))+d(~t+~,oq~(y~), q}t+~ o g0(y~) 

+ d(~b,+ ~o q~(Y2), #,(Y2)) 
~ < e / 2 + e / 2 = a  for t ~ < - T  

(iii) Similarly, one shows that d(~b,(yl), #,(Y2)) <~ ~ for t > T. 

Hence d(q~t(y~),#,(y2))<~e for all t e ~  and thus by expansiveness 
�9 t(ya)=y2, for some It] < & Since ~0 commutes with the flow, we get (if 
necessary by further shrinking the open set (9') that y~ =y2.  This proves 
that Yl =Y2 for all y~, y2 �9 (9' whenever their ~0 images coincide. | 

Lemma 3. Let ~ be expansive and let ~0 ~, ~p2 be conjugating maps 
defined in open (.9 such that q~l(x)=~o2(x) for some xe(9.  Then in fact 
~ol I (9'=~o2 I (9' in some neighborhood (9 'c  (9 ofx. 

Proof. Let T > 0  be such that d (~_ , (y ) ,~b_ t+~o  ~pi(y)) ~a/4 ,  
d(q~ ,(y), q~_t+~oq~i(y))~<e/4 for t >  T, ye(9,  and i = 1 , 2 ,  By continuity 
of ~o 1 and q~2 we can find an open neighborhood (9 'c  (9 of x such that 
d(~b,o~ol(y), q~to ~o2(y)) ~< e/2 for Itl ~< T+7 and y e  (9', where 7 is as in the 
proof of Lemma 2. By further shrinking (9' we can also assume that 
I~i(y)-~i(x)]  ~<e/4, I / f(y)- /~i(x)l  ~<e/4 for ye(9 ' ,  i =  1, 2. We will show 
that ~o~(y)= ~p2(y) for all y �9 (9'. We have: 

(i) d(~,oq~l(y),q~to~/(y))<<.a/2 for Itl<~T+7 

(ii) d (~_ ,oq~(y) ,  ~b ,o~o2(y)) 

<~ d(~_to q~l(y), ~b_,+~(y)(y))+d(q~_t+~X(y)(y), ~-t+~{y)(Y)) 
+ d(q~_, + cd(y)(Y), ~ - t  o (#2(y)) 

~ < e / 4 + e / 2 + e / 4 = ~  for t>>.T 

(iii) Similarly one shows that d(q~, o ~ol(y), 4 ,  o q~2(y)) <~ ~ for t > T. 

Thus, since the flow is expansive, one has ~toqgl(y)=~p2(y) for some 
] t ]<6  and therefore, as ~o ~ and ~o 2 commute with the flow, we get 
q~l(y) = q~2(y) for y in a possibly smaller (9'. | 
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Let e > 0 be some number;  then 

w2~(x)= {ye~2: d(~,(x), as,(y)) ~ 8 V t > 0  

and d(q),(x), q),(y)) --+ 0 as t --, oe } 

W~U(x) = {y~f2 :  d(q~_,(x), q~,(y))<~eVt>~O 

and d(~b_,(x), ~ ,(y))  ~ 0 as t --* oe } 

are the local strong stable, respectively unstable, manifold through the 
point  x ~ ~2. The weak stable and unstable manifolds th rough  x are given 
by 

w~( x)= S e,(w~(x)) 

w~ x)= U e,(wuu(x)) 
- - ~ < / < o o  

where wSS(x )=U~>o  w~s(x) and wUU(x)=U~>o w~u(x). The strong 
stable manifolds form a foliation transverse to the weak unstable foliation 
and vice versa, W uu is transverse to Wfi There is a canonical  local product  
structure on f2, denoted by [ . ,  .]  defined in a ne ighborhood  of  the 
diagonal  of g? x ~ and given by 

Ix, y ]  = wu u (x )~  WS(y) 

whenever d(x, y)<. 6 for some small positive 6. 
If x and y are two conjugate points in g?, then we can construct  a 

conjugat ing homeomorph i sm ~p in a ne ighborhood  (9 of x such that  
~0(x) = y as follows. Let z be close enough to x so that  d(~br(x), q~r(Y)) for 
some. T <  0 and put  

z ' =  [ ~ ( y ) ,  ~ , ( z ) ]  = w2u(~T(y))c~ w;(~T(z) )  

Moreover ,  if z is close enough to x so that d(qST,(Z), ~br,(y)) <<. 3 for some 
T ' >  0, then we can put  

z " :  [~T,(z), os~,(y)] : w2u(osT,(y))~ w;(r  

The image of z under  (p is now defined to be 

m u u  i t  ~0(z)= [ ~  T,(z"), 05 ~(z')] = ~ (as_~,(z))c~ w;(as_~(z ' ) )  

It is obvious that  q~(z) and z are conjugate and that q~ is cont inuous in 
some small open ne ighborhood  of (9 of x. 
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3. GIBBS STATES,  E Q U I L I B R I U M  STATES,  A N D  RESULTS 

Definit ion 4. I. A family of multipliers {R~: ~0 conjugating} is a 
collection of HSlder continuous functions R~o associated to conjugating 
homeomorphisms ~o: (99 ~ ( 2  that are flow invariant, Re, o~ooe_toq~t=R~o, 
and satisfy the multiplicative cocycle equation Ro =R~~ where 
q~= q~"oq)' o n  (_0g, = ~gt-l((~o,,  t") qgt((Q~o,)) (if (9~o is nonempty). 

II. A Crinvariant probability measure/1 on (2 is a Gibbs state for a 
family of multipliers {R~o: (p} if for every conjugating homeomorphism 
q): (9 9 ~ f2 the pullback q~*/1 is on rp((ge) equivalent to / i ,  and the Radon-  
Nikodym derivative satisfies 

dq~ * /1 
d/1 ~o(e~) = R~ 

Notice that the multipliers R~o are constant along orbits. We also say/1 is 
a strong Gibbs state for a H61der continuous function F: f2--, ~ if the 
multipliers are of the special form 

{;: f; R ~= e xp  (Foq)~+~o~o-Fo~bt)dt+ 
oO 

[Fo ~,o ~o - P(F)] dt 

(,) 

on (99, with delay functions e, fl, and ~o conjugating. The improper integrals 
converge because of strong hyperbolicity of the flow and H61der continuity 
of F. The number P(F) is the pressure of F and defined is, by the varia- 
tional principle, 

P(F)=sup(H(p)+ f Fdp) 

where the supremum is over all flow-invariant probability measures p 
on f2, and the quantity H(p) is the measure-theoretic entropy of the flow 
with respect to p. If ~t  is weak mixing (see ref. 3), the supremum is attained 
by a unique probability measure which is called the equilibrium state for F. 
If F vanishes identically, we have P(O)=Htop(~b,) is the topological 
entropy of the flow ~b,. 

Remark. Conjugacy can also be defined in the following slightly 
different manner. A point y in (2 is conjugate to some x e s if there exists 
a continuous function s: ~--* ~ such that d(~bt(x ), q~s~,)(Y))~0 as ]tl --* oe. 
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A probability measure is then Gibbs in the strong sense if for every HSlder 
continuous F on (2 the multipliers are of the form 

X 
o o  

R e = exp (Fo qs(,) o q) -- po ~b,) dt 
- - o o  

for every conjugating ~o, where F= F-P(F)  has pressure zero. 
We can now formulate our main result. 

T h e o r e m  5. Let ~b: f2--*12 be a weakly mixing Axiom A flow. 
Then: 

(i) I f / i  is an equilibrium state for F, H61der continuous, then/~ is a 
Gibbs state in the strong sense for F. 

(ii) I f / i  is a strong Gibbs state for a H61der continuous F, then it is 
also an equilibrium state for that same function. 

T h e o r e m  6. If /i is a Gibbs state for some family of HSlder 
continuous multipliers {R~: q~ conjugating} with H61der exponent 
~/> 6Htop(~b,)/2, then /i is the H* image of an equilibrium state /i on a 
suspended flow ~t: }2--, r, over a subshift of finite type for a HSlder 
continuous function F on 12, where H: 12 ~ f2 is one-to-one almost every- 
where and satisfies q~toH= Ho N, (that is, /i = H*/i). The multipliers R~ 
are in fact of the form given above. 

The proof of this result makes heavy use of Markov partition and the 
fact that the flow ~b, can be modeled by a suspended flow over a subshift 
of finite type. The lower bound 6Htop(~t)/)~ for the H61der exponent in 
Theorem 6 is not optimal. The optimal bound is presumably 2Htop(~b,)/2, 
which we could achieve with the methods of this paper provided we used 
moduli of continuity ~6) in defining H61der continuous functions of 
shiftspaces below. However, we do not use moduli of continuity, since we 
need a result of ref. 7 which has not been formulated in this context. 

Remarks. I. The measure m of maximal entropy is by the varia- 
tional principle the equilibrium state for the function F identically vanish- 
ing. Let q~ be a conjugating homeomorphism on (9 with delay functions c~ 
and /~; then we get that the associated multiplier is R~ =e n(=-~), where 
H =  Htop( l~ t )  = P(0), and m I~o(e)= ~o*(Rem I~). 

There is no measure that is invariant under conjugating homeo- 
morphisms perse. This is because we have to accommodate the delay 
functions. This is unlike the diffeomorphism case, where in order to get 
convergence of forward and backward orbits there are no time delays 
necessary. We could define an invariant measure # to be an equilibrium 
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state for some function F so that d<p*#/d#=e (~ fl)P(F). This condition is 
satisfied by the measure of maximal entropy, which we could call a 
measure "invariant" under conjugating homeomorphisms.  

II. The Sinai-Bowen-Ruelle (SRB) measure: Let f2 be an attractor, 
that is, condition (iii) for basic sets has to be replaced by I2 = 0~>o ~ t (U)  
for some open neighborhood of (2, and assume the flow q~t is of class C 2. 
Put 2t(x ) for the Jacobian of the linear map Dq~t from E:~ to E~t(x ) and 
define 

d 
r ( x )  = - ~ l o g  2 , (x)I t=o 

which is a H61der continuous function on f2 and has pressure zero. ~ The 
equilibrium state # for F is called the SRB measure and is the only flow- 
invariant measure which is absolutely continuous on unstable leaves. 

Now let <p be a conjugating homeomorphism on (9 c f2 with delay 
functions e and/3. To compute the multiplier Re,  note that [since P(F)=  0 
and 20 = 1 ] 

Hence we have 

(Foq~,+~o~o-FoqS,)dt= lim log 2t+~(~~ 
,~  ~ &(q~x) L (x )  

Fo OSto dt = - l o g  ~ (px)  

( f  o Ost+ ~ o q) - F o  q~,) dt = limo~ - l o g  2~+~(q~x) 
,t~(~ox) 2,(x) 

R e = lim 2_,+:,(q)x) 2,(x) 
,~ ~ ~._,(x) L+e(q~x) 

(the limit exists). 

4. S U B S H I F T S  A N D  DISCRETE GIBBS STATES 

Let A be an n x n matrix of zeros and ones and define the subshift X 
as the set of points x ~ [ I -  oo < i< ~ { 1, 2 ..... n } which satisfy the transition 
condition Ax~ ....  1 = 1 for all indices i e Z .  On _r we have the (two-sided) 
shift transformation ~r defined by (crx)i = xi+ 1 for all indices i. The topolo- 
gical entropy hto p of the shift is the largest positive eigenvalue of the 
matrix A. The topology on X is generated by the cylinder sets 

U ( x _ , . . . x n ) =  { y s X :  y i = x i ,  [i[ ~<n} 
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where x _ n . ' -  xn runs over all allowed finite strings in Z of lengths 2n + l, 
n~>l. 

The variation of a complex function f on Z is given by 

var,  f (z)  = sup sup { I f(z)  - f(z ' )]  : z; = zi, l i] ~< n } 
z ~ 7  

n >~ 1. Now let 0 be a positive number; then if var,  f (x )  decays fast enough, 
the quantity 

X[f[Io = sup sup e +2nO var, f ( z )  
z ~ Z  n>~l  

is finite and called the H6lder constant off .  Let Co(Z ) be the set of 
functions f which are finite with respect to the triple norm 

Ill f i l l 0 : / I  f i t0 + Itfl[oo 

where I[" H co is the usual supremum norm. Then Co(Z) with the Ill" r[] 0 norm 
is a Banach space. 

On Z a metric is defined by putting d(x, y )=e  -2~ x, y e Z ,  
where n(x, y) is the largest n such that y i =  xi for li[ ~<n. Note that in this 
metric f is in fact Lipshitz continuous with Lipshitz constant [[ f [[ 0. 

Let f :  X ~ N be a H61der continuous function on X; then (provided a 
is mixing) the equilibrium state is the unique shift-invariant probability 
measure that realizes the supremum in the variational principle p ( f ) =  
sup~ (h(v)+Sfdv),  where the supremum is over all shift-invariant prob- 
ability measures v on Z. Here h(v) is the metric entropy of o- with respect 
to v. The value p(f)  is called the pressure o f f .  

Gibbs states for homeomorphisms are quite well studied and known to 
be equivalent to equilibrium states for a wide class of strongly hyperbolic 
systems: In this section we shall consider Gibbs states on the subshift Z, 
which, to distinguish from the Gibbs states for Axiom A flows introduced 
above, we shall refer to as discrete Gibbs states. We say two points x, y e X 
are conjugate if d(~k(x), ~k(y)) __. 0 as ]k] goes to infinity, and a map @ on 
some (open) (9~ is conjugating if x and @(x) are conjugate for all x e (9. 
Note that here we do not have "delay functions" as in the case of a flow, 
although one could easily introduce delay functions also for the discrete 
action and still get the same equivalence results for discrete Gibbs and 
equilibrium states. For  the following definition also see refs. 5 and 9. 

Definit ion 7. I. A family of(discrete) multipliers on Z is a collec- 
tion of H61der continuous functions r~,: (9 o --, Z, indexed by conjugating 
homeomorphisms r satisfying r~o~o~-lOO'= r 0 (shift invariance) and the 



318 Haydn 

multiplicative cocycle equation ro=ro,,o o'.ro,, where O=ff"oO ' ,  con- 
jugating, is defined on (9 0 = 0'-1((9~,, c~ ~b'((9o,)) , 0', ~" conjugating. 

II. We say a shift-invariant probability measure/~ on 22 is a (discrete) 
Gibbs state for the family of (discrete) multipliers {r o �9 C0(22): 0 conjugat- 
ing}, 0 > 0 ,  if ( i ) 0"#  is on ff((9~,) equivalent to/~, and (ii) d~k*p/dkt= r o on 

To prove the second part of Theorem 5, we shall need the following 
result, which is proven in ref. 7, Theorem 6. 

P r o p o s i t i o n  8. Let # be a Gibbs state on 22 for a family of multi- 
pliers {r 0 �9 C0(S): 0 conjugating in 22}, 0 > h = htop(O-) .  Then # is the equi- 
librium state for some H61der continuous function f �9 U 0 < 0'< 0 - h Co,/2(22) 
and the multiplier for a conjugating 0 is in fact given by (on (9~,) 

r O=exp~ ( f o a k o 0 - - f o a  k) (**) 
k 

Conversely, an equilibrium state for some f � 9  Co(Z), 0 >  0, is also a Gibbs 
state for the family of multipliers {ro: 0 conjugating in 22}, where the 
multipliers r 0 are given by the equation (**). 

We also have the one-sided shift spaces 

So={ x �9  H {1 ..... n}:Ax, x,+l=l,i<O} 
j~<0 

z ' l = { x � 9  {1 ..... n}:Axi,xi+~=X,i>~l} 
j>-I 

where the topology is, as in the two-sided case, given by one-sided 
cylinders. There are shift maps on these one-sided subshifts, induced by o" 
and r -~, which we again denote by the same symbol. However, these maps 
are finite to one map and only locally homeomorphism. As above we define 
the variation for a function fl  on Zi and its triple norm II1' Ill 0, however, 
with the slight difference that the H61der constant II f,-ll o is here equal to 

sup supe+n~ i = 0 ,  1 
y ~ Z i  n>~ l 

The spaces Co(Xo), C0(~V'l) consist of the functions which are finite in the 
appropriate triple norm. Sometimes we shall use one-sided functions in a 
two-sided context, in which case they are understood to depend only on 
coordinates <~0, respectively on positive coordinates. 

By the variational principle one has on So and X1 equilibrium states 
in the same way as in the two-sided case. 
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We say two functions f ,  g on X are cohomologous if there exists a 
function h on Z" such that f -  g = h - h o ~. An expression of the form f = 
h -  h o ~r which is cohomologous to zero is called a coboundary. We have 
the following result by Sinai which allows us to transform within a 
cohomology class two-sided functions into one-sided ones, however, with 
some loss of regularity. 

kemma 9. If f e Co(X), then there exist functions f~, w~ ~ Co/2(Z ) 
such that f l  = f +  w~ - wt ocr is independent of coordinates ~<0. 

In the same way on can find fo, Woe Co/2(X) such that f o = f +  w 0 -  
Wo o ~ only depends on coordinates ~< 0. Thus f0 and f l  can be considered 
to lie in Co(Xo) and Co(X1), respectively. 

5. S U S P E N S I O N S  A N D  T H E  P R O D U C T  S T R U C T U R E  OF 
E Q U I L I B R I U M  S T A T E S  

For  a strictly positive real r ~ Co(X) one defines on the suspension 

s  {(x, t ) s X x  ~: O<~t<~r(x)} 

the suspended flow ~,  by ~,(x, s ) =  (x, t + s) if 0 <<. t + s <<. r(x) and extends 
it to all real t by identifying the point (x, r(x)) with (crx, 0). The space s 
is metrizable, as shown in ref. 4. The system (s q~r is an Axiom A flow and 
has (strong) stable and unstable foliations which are as in the following 
lemma. According to Lemma 9, let Vo, vl~Co/2(X) be such that r o = r +  
Vo-VoO a is a function on Xo and rt = r + v l -  Vl o a is a function on 22~. 
Then we have the following result. 

kemma 10. (8) The strong stable direction WSS(xy, s) and the 
strong unstable direction WUU(xy, s) through the point (xy, s ) e s  are 
locally given by 

{ (x'y, s + < ( x y ) -  v~(x' y) ): 

x'  e Xo close to x so that 0 <~ s + vl(xy) - vl(x' y) <<. r(x' y) } 

{(x/ ,  s -  Vo(Xy) + Vo(XJ)): 

y '  e X~ close to y so that 0 <<. s + Vo(Xy) - Vo(xy') <<. r(xy') } 

respectively, and extended using the identification (x'y, r(x'y)) = (cr(x'y), 0). 
Put W 2 ( x ) = U i , l ~  WU(gJ,(x)); then, if d(x,x')<<.& 0 < 6 < e  small 

enough, there is a bijection Px.x, from W~.(x) to W~(x')  ( d < e  small 

822/72/1-2-21 
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enough) by shifting along the strong unstable foliation. The map Px, x,: 
W~,(x) --. WU(x ') given by 

px, x,(z) = w s ' ( z ) •  

z s W~,(x), locally generates Borel isomorphisms between local weak 
unstable leaves. Similarly, if we put W 2 ( x ) =  U I,I ~ W2(~P,(x)) for the local 
unstable leaf through the point x e _r, then the map 

p'x,x,(Z) = w u u ( z ) a  W2(x')  

defines a (local) bijection from some WS,(x) (e' <5) to W~(x')  by sliding 
along the strong unstable foliation. 

We say a family of measures {#x~: x} with/~2 supported on the local 
weak unstable foliation through x is transverse to the strong stable 
foliation if the pullback p*,x4z~, is a measure on W2(x )  equivalent t o / ~ ,  
where Px, x' is a Borel isomorphism from W2(x )  to W,~,(x ') (for suitable 
5, 5') such that p~,x,(y) �9 WSS(y), y �9 W2(x) .  Similarly, one defines measures 
transverse to the strong unstable foliation. 

To prove that equilibrium states are in fact Gibbs, we shall need the 
following result from ref. 6. It shows that equilibrium states are canonical 
products of measures on the strong stable and unstable foliations (with 
Lebesgue measure along the flowlines) that satisfy Margulis-type cocyle 
equations. 

Proposition 11. Let fi be the equilibrium, state for some H61der 
continuous function F on Z. Then fi is (up to a normalizing factor) locally 
given by the product #s+ x #uu x l, where #~, #uu (I is Lebesgue measure) are 
measures on the strong stable, respectively unstable, leaves and have the 
following properties: 

(i) ~.#~u = e+,#uu, ~.#+~ = e-+'#ss, where z, = ~t o (Fo ~ - P(F))  ds. 

(ii) We have 

Y~g sS d#U~(y)=e~ y d p * , y # ~ ( x ) ,  d#~S(y)=e~ (x)  

where Px, y is the map sliding along the strong unstable foliation and 
~Ox, y=~o~ (Fo ~JsOPx, y- -Fog~)ds ,  and prx, y is the map sliding along the 

, = i o +  strong unstable foliation and O)x, y (Fo ~+ o p',  y - Fo ~g,) ds. 

6. PROOF OF T H E O R E M S  5 A N D  6 FOR SUSPENSIONS OVER 
SUBSHIFTS OF FINITE TYPE 

In this section we shall prove Theorem 5 for the case when 12 is a 
suspension over a subshift of finite type and the flow ~t is the associated 
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suspended flow. We shall make use of the fact that an equilibrium state fi 
according to Proposition 12 below splits into measures on the foliation that 
satisfy smooth cocyle equations. We shall use these equations to separately 
compare the "unstable components" and the "stable components" of fi and 
~0"/2, where q~ is any conjugating homeomorphism. 

Let ~2 be as before the suspension of a H61der continuous positive 
function r over the subshift X. We call a function F: ~ ~ ~ H61der con- 
tinuous if F(z, to) is (locally) H61der continuous as a function in z for fixed 
to, and Fo ~b~(z, 0) is H61der continuous for every z E X as a function of t. 

-f~(~) F(z, t)dt is H61der continuous. This implies in particular that f ( z ) -  jo 
We now formulate our main result (Theorem 5) for suspended flows. 

Pro0osition 12. (i) If/2 is an equilibrium state for some H61der 
continuous function F: X ~ ~, then/2 is Gibbs in the strong sense. 

(ii) If  17 is strongly Gibbs for a H61der continuous F, then it is also 
an equilibrium state for that same function. 

We shall first prove part  (i) of Proposit ion 12. For  this purpose let/2 be 
an equilibrium state for a H61der continuous function F: X ~ ~. Let ~0 be 
a conjugating homeomorphism defined in some (9~ c ~2. Let x ~ (9~, denote 
y = ~o(x), and let a, fl be the delay functions, that is, d(~b~+~(x), ~ ( y ) ) ~  0 
as t--* - o e  and d(~t+~(x), q)t(Y))--* 0 as t ~ oe. Then, by Proposition 11, 

dfi(y) d#U~(y) d#'~(y) dt 
d/2(x)- dvUU(x) duS'(x) dt 

where 

dpUU(y) d#"~(y) dpU~(qS~(x)) 
d~UU(x) d~UU(~(x)) d~UU(x) 

= exp(~%~(x), y o ~ ( x )  - re(x )) 

since ~b~(x) and y lie on the same strong stable leaf and 

dpU"(~t~(x)) = d(qS*_##u")(x) = e-~(x) d/~"U(x) 

On the other hand, we have 

du++(y) @SS(y) d~ssc~(x)) 
d~SS(x) d~SS(~(x)) d~SS(x) 

= exp [e)~,(x), y o ~b~(x) + z~(x)] 

since q~(x) and y share the same strong unstable leaf. 
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Thus 

d/7(y) 
d/7(x) 
- - =  exp [oge~(x), y O ~a(x) + ~@~(x), y~ q~(x) - z~(x) + %(x)]  

= e x p { f  ~  ( F ~ 1 7 6 1 7 6  

+ [ F o q S t o ~ o - e ( F ) ] d t +  (Fo~b t+~o~o-Foq) , )d t  

where the second integral in the braces is equal to z~(x)-z~(x) .  This 
proves the first part of Proposition 12. 

To prove the second statement of Proposition 12, let /7 be a Gibbs 
state on Z for the family of multipliers {R~: ~0 conjugating in ~2}, where the 
multipliers R~ are of the form given in ( . )  for a H61der continuous 
F: S ~ R. Since/7 is a ~bt-invariant measure on the suspension ~, it can be 
written as the product # • where l is the Lebesgue measure on ~ and 
# is a shift-invariant probability measure on the shift space S. Our 
statement now follows immediately from Lemma 14(I1) and Lemma 13 

below. | 

L e m m a  13. (ref. 3, Proposition 3.1). Let F: ~ ~ ~ be continuous and 
assume that f ( x )  = ~o (x) IF(x,  s) - P(F)]  ds is H61der continuous of class 
Co(S).  Then the equilibrium state/7 on !2 for F is given by /7 = # x l/~t(r), 
where # is, on the shiftspace Z, the equilibrium state for f .  

Lemma 14. I. The probability measure # on 2" associated to/7 on 
the suspension ~ is a Gibbs state for a family of discrete multipliers 
{r~, e Co(Z): ql conjugating). 

II. If/7 on Y~ is strongly Gibbs for F, then # is an equilibrium state 
on 2: for the function f ( x )  = ~o (x) [F(x, t) - e ( F ) ]  dt. 

ProoL We show that a conjugating homeomorphism ff on 2; gives 
rise to a conjugating homeomorphism ~p on ~2 and provides us thus with 
a family of multipliers r~, for the measure # on Z'. 

Let ~O be a conjugating homeomorphism defined on some (94, c L', that 
is, for z e (90 we have (Oz)j = zj for l j[ >/N for some integer N. Then we can 

t construct a conjugating homeomorphism ~p on some (9~ c E as follows: For 
points (z, 0) in ~2 we put q~(z, 0 ) =  (O(z), 0), z e Co, and extend it to an 
open neighborhood by putting q~(z, t ) =  7t,(O(z), 0). 

We have to show that ~0 is indeed conjugating, for which it is sufficient 
to show that the points (z, 0) and (O(z), 0) are conjugating. Let t > 0 be 
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large; then we have ~ ( z ,  0) = (a~(')(z), s) e l~, for some suitable integer k(t)  
which satisfies t=rk( t ) ( z )+s ,  where we used the abbreviation r k = r +  
r o a + r o a 2 + ... + r o a k- 1. Similarly, gt+~ (@(z), 0) = (a k'('+~) o O(z), s') ~ E, 
where t+f l=rk ' ( t+~)o~k(z )+s  '. The number fl is now chosen so that 
k'(t  + fi) = k(t)  if 

6 < s, s' < min(r o ak(')(z), r oak'(, + ~)o @(z)) - 6 

for some small positive 6 and all targe enough t. This is achieved by putting 

f l = -  lim [rk o 0 ( z ) - - r k ( z ) ] = - -  ~ ( roa~oO--roo 'k)(z)  
k ---~ oo k ~ O  

The limit exists since z and tp(z) are conjugated points in Z and fl(x) is 
H61der continuous in x. In a similar fashion one shows that the other delay 
function c~ has to be chosen as 

k ~ > l  

This proves that a conjugating homeomorphism @ on the subshift Z can be 
extended to a conjugating homeomorphism ~p on the suspended shift ~2. 

Now let @ and q~ be, as above, conjugating homeomorphisms in Z and 
Y~, respectively. Since 

d•(x') dt' dt,(x') 
Re(x, t)= (x, ctt,(x) 

where (x', t') = q~(x, t), it follows that Re(x,  t) = Re(x ,  0) is independent of 
t and thus depends only on the shiftspace coordinate x. Thus we can define 
r~,(z) = Re(z,  0) for z ~ (9~ c Z. 

We will show that {r~: ~ conjugating} is indeed a family of discrete 
multipliers on the shiftspace Z. Put  @ ' =  a o @ o a 1 and let ~0'= 
~gr(~-l(z))o~0 o ~_r(~-l(z)) be the associated conjugating homeomorphism 
in ~2. Then shift invariance of the multiplier re,, ro, o a = r o ,  follows 
immediately from the flow invariance of R~o: Re,~ gtr(~-l(z))=Re. Now 
assume @', @" are conjugating homeomorphisms in Z such that the 
composition @ = ~"o @' is defined on some appropriate domain (9 o c Z. 
Let (p' and cp" be the associated conjugating maps in E. For the composi- 
tion we get for the points (z, 0), z e(9 o, that (p(z, 0 ) =  (t~"o@'(z), 0 ) =  
~o"(@'(z), 0 ) =  (p"o (p'(z, 0) and that indeed (p = q~"oq/, which implies the 
cocyle equation. This proves part I of the lemma. 

To prove part II of the lemma, let fi be strongly Gibbs for F, that is, 
the multipliers R e are given by (.).  Let ~ and (p be conjugating 

822/72/1-2-22 
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homeomorphisms as above on to~, c Z and (9 e c l~, respectively. We get that 
the discrete multipliers are 

r~,(x)=exp ~ ~f,~+~(x) [Fo gt,(x, 0 ) -  P(F)] dt 
k=--co [.J/~(x) 

-- f r~+l(q'(x)) (go gt,(~k(x), O) -- P(F)) dt~ 
drk(O(x)) 3 

=exp ~ [ fo~koO(X)- - foak(x )]  
k = - - c ~  

and thus satisfy (**) for the f given in the statement of the lemma. Thus 
/~ is strongly Gibbs for f as in ref. 8, and therefore an equilibrium state 
forf .  | 

Next let us prove Theorem 6 for a suspended flow. We reformulate: 

P r o p o s i t i o n  15. Let {Re: (p conjugating in E} be a family of 
multipliers such that Re(z, to)e Co(N) as functions of z for fixed to, where 
O>h=htop(ff); then there exists a H61der continuous function F: E ~ 
such that the multipliers R e are of the form given in (*). Moreover, 
f (z )  = ~(z)F(z, t)dt lies in the function space t.Jo~<0,<0-h Co,/2(X). 

Proof. The goal is to find a H61der continuous function F(z, t) on the 
suspension 12 such that fi is an equilibrium state for F. Let {Re: (p conjugating 
in E} be the given family of multipliers for the Gibbs state/i. Then, 
by Lemma 14, the associated measure # on the subshift Z" is Gibbs with 
respect to the family of discrete multipliers {roe C0(X): 0 conjugating}. 
By Proposition 8 there exists a H61der continuous function f in 
U0< 0'< 0-h Co'/2(S), where h = htop(O')< 0,  such that the discrete multipliers 
r o are given by r o = exp Zk ( f~  (rk~ O _ f o ~ k )  (t) conjugating) and so that 
# is the equilibrium state for f .  

Let us assume that p ( f ) =  0 [otherwise replace f by the function 
f - p ( f ) ,  which has the same equilibrium state kl and the same discrete 
multipliers r~, as f |  and define the potential function F on the suspension 
12 as follows. Put 5 = minz~z r(z)/2 and define (6 > 0): 

(i) F(z, t)= f(z)(t/62) if0~<t~<6 

(ii) F(z, t) = [f(z)/6](2 - t/f) if 6 ~ t ~< 26 

(iii) F(z, t ) = 0  if 26 <<. t <-~r(z) 

Obviously F(z, t) is H61der continuous, has pressure zero since P(F)= 
p ( f ) = 0 ,  and yields f(z)=~ro(~)F(z, t)dt. This concludes the proof of 
Proposition 15. | 
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7. M A R K O V  P A R T I T I O N S  A N D  T H E  P R O O F  OF 
T H E O R E M S  5 A N D  6 

In this last section we use standard arguments for Markov partitions 
to generalize our results of the last section from suspended flows over 
subshifls of finite type to arbitrary Axiom A flows. Markov partitions for 
Axiom A flows are constructed in much the same way as for diffeomorphisms. 
We will summarize the procedure and refer for details to ref. 2. One can 
chose finitely many arbitrarily small pieces of hyperplanes Hj transverse to 
the flow and define the Poincar6 map P: U /Hj  ~ U/Hj  by P(x)  = q~(x~(x), 
where f(x), the ceiling function, measures the time it takes for a point x on 
some Hj to flow up to the next cross section, i.e., for x E (.Jy Hj we define 
f ( x ) = m i n { t > 0 :  ~ (x )EUyHj} .  The sections are chosen to satisfy the 
so-called Markov conditions, which are: 

(i) clos(int(Hy)) = Hy for all j 

(ii) If x ~ H k, P(x)  E H], then 

(qS[o,2a] (W~'(x) c~ Ilk)) c~ 11/= W~( P(x)  ) c~ H/ 

( + c- :~,o~( w ; (  P(x  ) ) • H+) ) c~ Hk = W; (x )  ~ Hk 

where ~ is the size of the pieces of hyperplanes, i.e., diam(Hj) ~< e for all j, 
and 6 =  [[r[l~. One defines a transition matrix A by putting Ai, /= 1 if 
P(Hi) c~ Hj :~ ~ and A~, 2 = 0 otherwise. The subshift Z now consists of all 
points z e l - [ _ ~ < ~ < ~  {1 ..... n}, n =  # H j ,  which satisfy the transition con- 
dition A~,,x~+~=l for all/. The map n : Z ~  ~ / H j  is defined by rc(z)= 
0 - ~  <~<+ P-+(H~), where the infinite intersection consists of exactly one 
point if ~ is small enough. If we denote by a the shift transformation on Z, 
a(z)~ = z++a, then zoo ~p = P o re. The function r = n .P  is a H61der continuous 
function in 27, which, suspended over the shiftspace Z, defines the suspen- 
sion ~:= {(x, t ) e S •  O<~t<~r(x)}, with the identification ( x , r ( x ) ) =  
(a(x), 0), on which we define as above the suspended flow T t always 
keeping in mind that we identify points (x, r(x)) with (a(x), 0). The map 
~: s ~ U/Hj  is easily extended to a m a p / / :  2; ~ ~2 such t h a t / / o  T t = q~r ~ 

A conjugating homeomorphism ~p in the suspension ]E gives rise to a 
conjugating homeomorphism ~b on (2 such that ~b o / / = / / o  ~0. Moreover, if 
x is a point in Z (or (2), then the set of points conjugated to it is dense in 
22 (respectively ~2). In fact, Proposition 12 describes how a certain type of 
conjugating map in 2; can be constructed from conjugating maps in the 
shift S. 

Let/~ be a Gibbs state for a family of multipliers {k~: ~o conjugating 
in (2 }. The map / / i s  one-to-one almost everywhere for ergodic measures 
that are positive on open sets. We consequently have to show that the 
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/~-measure of the set of which H is not one-to-one is zero. Let OH = Uk dHk 
be the collective boundary of the hyperplanes Hk and put K =  L)j TJ(OH). 
Then K is on the cross section Uk Hk the set of points on which 7z is not 
one-to-one. Thus /<=~[o,~](K)= {~b(y); O<~t~(y), yeK} is where H 
fails to be one-to-one. For the following lemma see also ref. 8. 

k e m m a  16. If/~ is a Gibbs state on/2,  then/~(/s = 0. 

Proof. Assume/~(/s ~ 0. Put ~ +H for the forward boundary of the 
Markov partition and d - H  for the backward boundary. Then we have 
OH=O+Hud-H, P(~+H)c~?+H, and P-t(c3-H)cO-H. Put H e for the 
compact and P-invariant sets (-]j>~oP+-J(d+-H), let K-+= ~b[o.e](H• and 
note that, since /i is flow invariant, either k i (K+)r  or /~(K ) ~ 0  
(or both). Assume /J(K + ) r 0 and let e > 0. Then /~(K + c~ B~(x)) r 0 for 
some point x in K +, where B,(x) is the ball of radius e and center x. 
Choose y ~ B~(x) such that there exists a conjugating homeomorphism q3 
from B~(x) into a neighborhood C of y with (9 ~ B,(x)= ~ and satisfying 
dist(q, ao~o(B~(x)),K+)=6>O (fl is a delay function forq~), where 
~t~o~o(B,(x)) = {~i~/~(y)O(~(y)" y eBb(x)} (for e sufficiently small). Now let 
T >  0 be such that 

sup dist(q~T(y),  K + ) < 6 
y ~ ~ o 4~(B~(x)) 

Thus we have ~br(D ) and D are disjoint, where D =  ~ o  ~b(K+ c~ B~(x)), 
and also ~ k T ( D ) ~ D = ~  for all k = l ,  2 ..... Thus the sets {45kr(D): 
k = 0 ,  1, 2,...} are pairwise disjoint, and since /~(D)>0, this contradicts 
finiteness of the measure/2 | 

Proof of Theorem 5. To prove the first part of general Axiom A 
flows let F be a H61der continuous function on f2 with H61der exponent 
t /> 0 and/~ its equilibrium state. By ref. 9, Theorem 7.6, ~ = / /* / i ,  where/~ 
is the equilibrium state for the lifted function F =  H , F  and is, by Proposi- 
tion 12, also strongly Gibbs for F. This proves the first part of Theorem 5. 
Note that f(z)= ~'o (z) F(z, t)dt H61der continuous of class Co(Z), where 
0 = t/2/2. 

By Lemma 16, a Gibbs state /i for the family of multipliers {/~e: ~b 
conjugating in (2} lifts to a Gibbs state/i  = H* -1/i [where/ i (H 1(/~)) = 0] 
on ~ with multipliers R~o=H,_RUo~o, where q) are conjugating homeo- 
morphisms in lg. Now assume that /J is Gibbs in the strong sense for 
some H61der continuous function P; then ~ is strongly Gibbs for F =  H,F 
and by Proposition 12(ii) also the equilibrium state for/:. This proves 
Theorem 5(ii). II 
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Proof of Theorem 6. If we assume that  the multipliers Rno~o are 
H61der cont inuous to the exponent  r/, then their lifts R~o(x, t ) = H . R n o  ~ 
will for fixed t, as functions of x, be of  class Co(S) with 0 = t/2/2. By 
Propos i t ion  15 there exists a H61der cont inuous function F on the suspen- 
sion 12 which has the equilibrium state/ i ,  provided 0 > htop(O). It therefore 
remains to show that  0 is indeed larger than the topological  ent ropy of  the 
subshift X. 

A flow-invariant measure/~ on l~ is given by/~ = p x lip(r), where p is 
a shift invariant  measure on S and l is Lebesgue measure on ~. By 
Abramov ' s  formula, (1) h(p)= H(~)p(r) ,  where H(/I) is the metric entropy 
of r and h(p) is the metric ent ropy of  p, and by the variational principle 
we have 

htop(O" ) = sup h(p) <~ sup H(fi) Ilrll o~ -- n t o p ( ~ t )  I/rl[ oo 
p p 

Moreover ,  since 0 = �89 inf r, we get 

htop(0-) ~< Htop(~ t )  . sup r 
6Htop(t#t) 2 ), 

i n f r < q  ~ i n f r =  0 
2 .L 

Here we made  use of the fact that  the M a r k o v  part i t ion can be chosen so 
that the condit ion sup r~< 3 - i n f r  is satisfied. Thus we have 0 > htop(o-), 

since r/ is  by assumption greater than 6Htop(~t)/2. | 
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